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Abstract: Sustainable development of renewable resources is a major challenge globally. 
Biomass is an important renewable energy source and an alternative to fossil fuels. Pyrolysis 
of biomass is a promising method for simultaneous production of biochar, bio-oil, 
pyroligneous acid (PA), and gaseous fuels. The purpose of this study was to investigate the 
pyrolysis process and products yields of Schisandra chinensis fruits with different 
pyrolysis powers. The obtained PA was extracted with organic solvents, including ethyl 
formate, dichloromethane, methanol and tetrahydrofuran. The antioxidant activities, 
including the free radical scavenging activity and ferric reducing power, of the PA extracts 
were investigated. The synthetic antioxidants butylated hydroxyanisole and butylated 
hydroxytoluene were used as positive controls. A dichloromethane extract of PA showed 
excellent antioxidant properties compared to the other extracts. The chemical compositions 
of the PA extracts were determined by GC-MS, and further proved that the 
dichloromethane extract had the best antioxidant characteristics among the extracts tested. 

Keywords: Schisandra chinensis Baill.; pyrolysis; pyroligneous acid; antioxidant  
activity; GC-MS 
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1. Introduction 

Biomass is an important renewable resource, and its use for energy production provides economic 
security that is less environmentally damaging than that of other energy sources. Biomass can be 
converted by thermochemical processes, including pyrolysis, combustion, gasification, and 
liquefaction. Pyrolysis is an efficient method for utilization of biomass, especially for agricultural 
countries with large quantities of available biomass by-products [1,2]. The products of biomass 
pyrolysis include char, gas, tar and pyroligneous acid (PA). 

Also known as wood vinegar or pyroligneous liquor, PA is a complex mixture of water, alcohols, 
organic acids, phenolics, aldehydes, ketones, esters, furan and pyran derivatives, hydrocarbons, and 
nitrogen compounds [3,4]. The composition and yield of PA depends on the species the biomass was 
derived from, and pyrolysis conditions. PA is a reddish-brown, acidic, water-soluble wood distillate, 
which is used in pesticides, refined food additives [5], and smoke flavoring [6]. PA is useful for soil 
improvement, and especially for the control of fungal and termite infestations [7,8]. PA also exhibits 
excellent antioxidant activity. PA from bamboo has superoxide anion scavenging activity and antioxidant 
activity [9]. Antioxidant and free radical scavenging activities have been reported for PAs from 
Rhizophora apiculata [10], walnut shells [11], and hickory shells [12]. PA has potential as a natural 
antioxidant because it is rich in phenolic compounds and can be used as a food antioxidant [11]. 

Antioxidants have become important because of their role in health and their effects on cardiovascular 
disease, atherosclerosis, cancer, and aging. Many antioxidant compounds from plant sources have been 
identified as free radical scavengers [13,14]. In recent years, the search for naturally occurring antioxidants 
for use in food and medicine has intensified in order to replace synthetic antioxidants [15,16], which 
are being restricted because of their side effects (e.g., carcinogenicity) [17]. A number of synthetic 
antioxidants, such as 2-tert-butyl-4-methoxyphenol and 3-tert-butyl-4-methoxyphenol (butylated 
hydroxyanisole, BHA), and tert-butylhydroquinone are added to foodstuffs, but their use has come 
under scrutiny because of toxicity issues [18]. Therefore, attention has been directed towards the 
discovery of natural antioxidants from plant sources. Crude extracts of plant materials rich in 
polyphenols are increasingly of interest to the food industry because of their capacity to retard 
oxidative degradation of lipids and thereby improve the quality and nutritional value of food [13]. 

The composition and yield of PA depends on the pyrolysis process conditions and the biomass raw 
materials. Extensive studies of the chemical compositions and applications of PAs from oak, sakura, 
green tea, bamboo, eucalyptus, mangrove, rosemary and waste biomass have been conducted [7,10,19]. 
However, the themochemical conversion of Schisandra chinensis Baill. (S. chinensis) and chemical 
composition and antioxidant activity of S. chinensis PA have not been studied in detail. 

Dried fruit of S. chinensis are important in herbal medicines and as a food additive in China [20]. 
They are used extensively in Korea and Japan as a tonic, sedative and astringent agent to treat various 
diseases [21–23]. Modern pharmacological research has shown that S. chinensis has antioxidant, 
antitumor [24], anti-hepatotoxic, detoxificant, anticarcinogenic [25], and anti-inflammatory [26] 
activity, and can act on the central nervous system. In addition, it can reduce fatigue and increase 
endurance, which can contribute to improved physical performance in sports [27]. In China, it is also 
used as a flavor agent and food additive when stewing fish and meat and making soup, tea, yogurt and 
porridge [28–31]. The chemical composition of S. chinensis fruits includes essential oil terpenoids [32], 
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polysaccharides [33], anthocyanins [34], organic acids, vitamins, tannins [35], and biphenyl 
cyclooctene lignans [36] was shown in Table 1. 

Table 1. Chemical composition of S. chinensis fruits. 

Chemical Composition Content (%) Reference 
Essential oil 1.2–3.0 [32] 

Polysaccharides 1.2–2.2 [33] 
Anthocyanins 2.0–3.2 [34] 

Terpenoids <1.5 [35] 
Organic acids (citric, malic, fumaric and tartaric acid) <1.0 [35] 

Vitamins C and E <0.5 [35] 
Tannins <1.5 [35] 

Biphenyl cyclooctene lignans and derivatives 7.2–19.2 [36] 

This study aimed to investigate the pyrolysis of S. chinensis, which can be used to obtained the 
natural antioxidant S. chinensis PA and to reduce environmental pollution from fossil fuels. Another 
objective of this study was to evaluate the phenolic content, radical scavenging activity, and reducing 
power of S. chinensis PA extracts in ethyl formate, dichloromethane, methanol, and tetrahydrofuran. 
The extracts were obtained after pyrolysis under different heating conditions. The results could be used 
for development of antioxidants and preservatives from S. chinensis PA. 

2. Results and Discussion 

2.1. Influence of Moisture Content and Molding Temperature on the Briquetting Effect 

Dried residues with different moisture contents (3.5%, 4.0%, 5.0%, 5.5%, 6.5%, 8.0%, 9.5%, 
10.5%, 11.5%, 13.0%, 14.0%, 15.5%, 16.0%, 17.5%) were put into the hopper, respectively, and then 
the electric heating tube was opened, the molding temperature was kept at 200 °C, and the extrusion 
machine was started, driving the spiral propellers to push the dried residues into the molding sleeve. 
The briquetting effect of molding rods is shown in Table 2. When the residual moisture was less than 
5% or more than 15%, it cannot be briquetted. While the residual moisture was 5%–8% or 13%–15%, 
the molding effect was poor, although it can be briquetted. However, when the residual moisture was 
8%–13%, the briquetted effect of molding rods was good, so the ideal residual moisture for the 
briquette production process was 8%–13%. 

Table 2. Effect of moisture content on raw residue briquetting. 

Moisture (%) <5% 5%–8% 8%–13% 13%–15% >15% 
Can be Briquetted No Almost not Yes Almost not No 

Dried residue with 10.0% moisture content was put into the hopper, and then the electric heating 
tube was opened, and the molding temperature were kept at different temperatures (50, 100, 150, 200, 250, 
300, 350 and 400 °C), respectively, and the extrusion machine was started, driving the spiral propellers 
to push the dried residues into the molding sleeve. The briquetting effect of molding rods is shown in 
Table 3. When the molding temperature was less than 150 °C or more than 400 °C, it cannot be 
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briquetted. When the molding temperature was 250–400 °C the briquetting effect is poor, and there 
were some cracks on the molding rods’ surface. When the molding temperature was 200 °C, the 
briquetting effect of the molding rods was good, there were no cracks and they were not carbonized on 
surface, and the molding rods output speed was the most fast of all. 

Table 3. Effect of temperature on raw residue briquetting. 

Briquetting Temperature (°C) 50 100 150 200 250 300 350 400 
Can be briquetted No No Yes Yes Yes Yes Almost not No 
Cracks on surface —— —— Yes No Yes Yes A lot —— 

Carbonized on surface —— —— No No A little Partial Totally Seriously
Briquetting rate (kg/min) —— —— 2.1 2.0 1.8 1.8 1.7 —— 

2.2. Pyrolysis Curves and Yields of Pyrolysis Products 

The pyrolysis curves shows the pyrolysis temperature against pyrolysis time. The yields of the 
pyrolysis products, including bio-gas, bio-PA, bio-oil, and bio-char, are shown in Figure 1. The 
pyrolysis curves (Figure 1a) showed that with a higher heating power, the temperature increased more 
rapidly and the pyrolysis rate was higher.  

Figure 1. Pyrolysis curves (a) and the yields of pyrolysis products (b) generated with 
different heating powers. 
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The maximum final temperature of the pyrolysis reaction was close to 600 °C (1200 W). Depending 
on the thermal environment and the final temperature, pyrolysis will yield mainly biochar at low 
temperatures (<450 °C) when the heating rate is quite slow, and mainly gases at high temperatures  
(>800 °C) with rapid heating rates. At an intermediate temperature and under relatively high heating 
rates, the main product is bio-oil. From Figure 1b, the yields of bio-oil pyrolysis with different powers 
were similar, and the yields of bio-oil were 21.5% (200 W), 21.4% (700 W), and 21.4% (1200 W), 
respectively, of the total pyrolysis products. However, when the pyrolysis power increased, the bio-gas 
yield increased and the bio-PA and bio-char yields decreased, the PA yield with 200 W pyrolysis was 
34.5% of the total pyrolysis products, more than that with pyrolysis at higher power 30.4% (700 W), 
and 27.5% (1200 W), respectively. The char yield with 200 W pyrolysis was 28.4% of the total 
pyrolysis products, more than that with pyrolysis at higher power 26.1% (700 W), and 22.5% (1200 W), 
respectively. Thus, to obtain high yields of bio-PA and bio-char, a low power pyrolysis (200 W) 
should be used. The mass difference from input and output products was determined by the product 
mass of non-condensable gas. The bio-gas yields were 15.6% (200 W), 22.1% (700 W), and 28.6% 
(1200 W) of the total pyrolysis products, respectively. Therefore, the higher the pyrolysis power, the 
faster the pyrolysis rate was, and the larger the amount of non-condensable gas produced was. 

2.3. Separation of PA from Bio-Oil 

The condensate collected from the condenser was a mixture of PA and bio-oil, and separation by 
cooling was a simple way to separate the bio-PA (the upper layer) from the bio-oil (the lower layer). 
To investigate the effect of the separation temperature on separation time, five 200 mL aliquots of 
condensate were accurately measured and then poured into a separatory funnel, cooled at different 
temperatures (í5°C–20 °C). The volume of PA and bio-oil were recorded every hour, and the 
separation time was recorded at the time at which the volumes stopped changing. The separation curve 
for PA and bio-oil is shown in Figure 2.  

Figure 2. Effect of temperature on time required to separate bio-PA and bio-oil. 

 

Lower cooling temperatures gave better separation of the two phases than higher temperatures, and 
this reduced the separation time. Separation of the condensate at 20 °C required nearly 350 h for 
complete separation. The separation rate was higher below 5 °C, and the condensate was completely 
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separated within 12 h. If the condensate was separated at a temperature below 0 °C, it would need 
refrigeration, which would increase energy consumption. Therefore, 5 °C was selected as the operation 
temperature to separate bio-PA from bio-oil. After stratification in the closed separatory funnel, the  
bio-oil (the lower layer) was removed and the antioxidant capacities of the bio-PA was determined. 

2.4. Determination of Total Phenolics Content 

The Folin-Ciocalteu assay is a fast and simple method to rapidly determine the content of phenolics 
in samples. Most of the work dealing with the content of phenolics in natural products uses gallic acid 
as a standard, and the content of phenolics in this work is expressed as gallic acid equivalents to 
facilitate comparison to earlier studies [37]. As shown in Table 4, the total phenolic content of PA-200 
(pyrolysis at 200 W) was higher than that of PA-700 (pyrolysis at 700 W) and PA-1200 (pyrolysis at 
1200 W), because the phenolic compounds were not destroyed (i.e., pyrolyzed) under the low 
temperature conditions. Furthermore, some of the water-soluble phenolic compounds were extracted 
into water under the lower temperature conditions, because of slow evaporation of moisture from the 
residue. Consequently, the total phenolic content of PA-200 was the highest, and PA-200 was selected 
for the antioxidant activity tests. As shown in Table 4, in all the PA extracts, the total phenolic contents 
of DMEP and MEP were higher than those of EFEP and TFEP. This means the phenolic compounds in 
PA were more likely to be soluble in dichloromethane and methanol. 

Table 4. Total phenolic content of PA extracts. 

Heating Power 
(W) 

Symbols 
Gallic Acid Equivalents (mg/g) 

EFEP a DMEP b MEP c TFEP d 
200 PA-200 2.36 ± 0.05 3.91 ± 0.13 3.79 ± 0.14 2.14 ± 0.10
700 PA-700 2.35 ± 0.12 3.79 ± 0.11 3.47 ± 0.15 1.99 ± 0.06

1200 PA-1200 2.30 ± 0.13 2.81 ± 0.14 2.69 ± 0.10 1.58 ± 0.08
a EFEP: ethyl formate extract phase of pyroligneous acid; b DMEP: dichloromethane extract phase of 
pyroligneous acid; c MEP: methanol extract phase of pyroligneous acid; d TFEP: tetrahydrofuran extract 
phase of pyroligneous acid. 

2.5. Ferric Reducing Power 

The antioxidant potentials of the PA extracts were estimated from their ability to reduce  
TPTZ-Fe(III) to TPTZ-Fe(II) [38]. A higher absorbance indicated a higher ferric reducing power. The 
reducing antioxidant power of each sample is expressed as Trolox equivalents, and the reducing 
antioxidant power of solvent was deducted as a blank. Figure 3 shows the reduction capacities of the 
various extracts from samples subjected to different heating powers during pyrolysis. Figure 3a (PA-200) 
shows that the reduction capacities of MEP and DMEP at 100 µg/mL were 587.55 ± 22.50 and  
522.05 ± 32.20 (TE)/g, respectively. These results were higher than those of EFEP (102.35 ± 4.20 (TE)/g) 
and TFEP (148.05 ± 8.43 (TE)/g) at the same concentration. The reduction capacities of BHA and 
BHT at 100 µg/mL were 344.05 ± 11.11 (TE)/g and 94.35 ± 2.34 (TE)/g, respectively. Figure 3b  
(PA-700) and Figure 3c (PA-1200) show the same trends. The reducing power order of PA-200 was 
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MEP > DMEP > BHA > TFEP > EFEP > BHT, while the order of PA-700 was MEP > BHA > DMEP 
> BHT > TFEP > EFEP, and the order of PA-1200 was BHA > MEP > DMEP > BHT > TFEP > EFEP. 

Figure 3. Reducing antioxidant capacities of PA extracts after (a) pyrolysis at 200 W;  
(b) pyrolysis at 700 W; (c) pyrolysis at 1200 W. 

 

 

 

2.6. DPPH Free Radical Scavenging Activity 

DPPH is a stable free radical, and can accept an electron or hydrogen free radical to reach a steady 
state [39]. Consequently, DPPH has been widely used to determine the free-radical scavenging abilities 
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of various samples. When the scavenging rate of DPPH is 50%, the corresponding value of sample 
concentration is SC50. So, a lower SC50 value indicates the stronger antioxidant activity. As shown in 
Figure 4, an obvious increase in SC% value occurred when the concentration of PA increased.  

Figure 4. DPPH scavenging activities of PA extracts after (a) pyrolysis at 200 W;  
(b) pyrolysis at 700 W; (c) pyrolysis at 1200 W. 

 

 

 

Thus, the DPPH scavenging activities decreased order was MEP > DMEP > EFEP > TFEP. The 
DPPH scavenging activity of PA-200 (Figure 4a) was higher than that of PA-700 (Figure 4b) and  
PA-1200 (Figure 4c), as the lower heating power enhance the residence time of liquid pyrolysis 
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products, increasing the content of water soluble bioactive small molecules [10]. In detail, the yields of 
pyrolysis products, such as the condenser and bio-char depend on the heating rate of pyrolysis. In other 
words, the lower heating power and the slower pyrolysis rate, the pyrolysis reaction is more 
completely, and the yield of the condenser liquid is higher. And vice the higher heating power and 
faster pyrolysis, enhance the solid pyrolysis products thus increasing bio-char formation [2]. When the 
pyrolysis power was 200 W, the SC50 values of MEP and DMEP were 41 ± 1.2 and 92 ± 2.3 µg/mL, 
respectively, and were lower than the SC50 values of EFEP and TFEP. The SC50 values of BHA and 
BHT were 19 ± 0.23 and 60 ± 0.30 µg/mL, respectively. The DPPH scavenging activities of PA-200 
were in the order BHA > MEP > BHT > DMEP > EFEP > TFEP. While for PA-700 and PA-1200, the 
order was BHA > BHT > MEP > DMEP > EFEP > TFEP. 

2.7. Chemical Composition of PA Extracts 

The compositions of the S. chinensis PA extracts were analyzed by GC-MS. Results were accepted 
when a match >90% was obtained. The relative contents of the compounds were determined using the 
normalization method. Among the pyrolysis powers tested, 200 W pyrolysis gave the highest yield of 
PA, and PA-200 had the highest total phenolic content. Therefore, we used PA-200 for the antioxidant 
test, and extracted it with four different organic solvents. The GC-MS results from this study are 
shown in Table 5. 

Table 5. Volatile compounds in PA-200 extracts. 

No. 
Retention 

Time(min) 
Compounds CAS Number

Molecular 

Formula 

RA% a 

EFEP b DMEP c MEP d TFEP e

1 5.498 Pyridine, 3,4-dimethyl- 000583-58-4 C7H9N —— —— —— 9.07 

2 6.106 
2,5-Furandione,  

3-methyl- 
000616-02-4 C5H4O3 16.43 7.20 17.06 14.35 

3 6.489 
2-Cyclopenten-1-one,  

3-methyl- 
002758-18-1 C6H8O 4.89 6.87 —— 2.82 

4 7.078 Formic acid phenyl ester 001864-94-4 C7H6O2 19.88 20.89 17.80 18.39 

5 8.065 
1,2-Cyclopentanedione, 

3-methyl- 
000765-70-8 C6H8O2 2.50 —— —— —— 

6 8.686 Ethylidenecyclobutane 001528-21-8 C6H10 1.70 3.15 —— 1.79 

7 9.261 p-Cresol 000106-44-5 C7H8O 10.41 16.24 22.84 10.35 

8 9.429 
Phosphonofluoridic acid, 

ethyl-, nonyl ester 
171741-07-4 C11H24FO2P 9.57 12.51 9.50 8.85 

9 9.755 

2,4(1H,3H)-

Pyrimidinedione,  

5-amino- 

000932-52-5 C4H5N3O2 9.98 12.61 9.29 9.07 

10 9.929 
4-Piperidinone,  

2,2,6,6-tetramethyl- 
000826-36-8 C9H17NO 2.41 3.74 1.87 2.29 

11 9.996 1-Hexene, 2-methyl- 006094-02-6 C7H14 0.71 —— 2.38 —— 

12 10.243 
2,5-Pyrrolidinedione,  

1-ethyl- 
002314-78-5 C6H9NO2 1.21 —— 2.59 —— 
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Table 5. Cont. 

No. 
Retention 

Time(min) 
Compounds CAS Number

Molecular 

Formula 

RA% a 

EFEP b DMEP c MEP d TFEP e

13 10.294 4-Pyridinol 000626-64-2 C5H5NO 1.66 —— 2.83 —— 

14 10.510 Succinimide 000123-56-8 C4H5NO2 2.03 7.71 —— 2.87 

15 10.698 Glutarimide 001121-89-7 C5H7NO2 3.60 —— 6.04 3.73 

16 10.869 4,5,6-Pyrimidinetriamine 000118-70-7 C4H7N5 2.23 2.65 —— 3.68 

17 10.926 
3,3-Dimethylpyrrolidine-

2,5-dione 
003437-29-4 C6H9NO2 1.56 —— —— 3.27 

18 11.261 Creosol 000093-51-6 C8H10O2 1.24 —— —— 1.95 

19 11.490 
3-Pyridinol, 2,6-

dimethyl- 
001122-43-6 C7H9NO —— —— —— 0.54 

20 11.655 
1,4,3,6-Dianhydro-alpha-

d-glucopyranose 
100009-81-8 C6H8O4 5.01 3.51 —— 2.09 

21 13.578 Hydroquinone 000123-31-9 C6H6O2 —— —— 5.75 —— 

22 f 33.801 

Phenol,2,2'-

methylenebis[6-(1,1-

dimethylethyl)-4-methyl- 

000119-47-1 C23H32O2 2.98 2.92 2.05 4.89 

a RA: relative area of total peak area (removed the blank solvent); b EFEP: ethyl formate extract phase of pyroligneous acid; c DMEP: 

dichloromethane extract phase of pyroligneous acid; d MEP: methanol extract phase of pyroligneous acid; e TFEP: tetrahydrofuran 

extract phase of pyroligneous acid; f Compound No. 22: Butylated hydroxytoluene (BHT) is added in the solvent to keep the stability of 

solvent, is not the composition of PA. 

According to previous studies, the thermal degradation characteristics of wood materials or plants 
are strongly influenced by their chemical composition (cellulose, hemicellulose, and lignin) [40–42]. 
Biomass undergoing pyrolytic reactions at high temperatures forms different compounds. Saccharides, 
including cellulose, hemicellulose and pectin, are thermally degraded into ketones, alcohols, and furan 
and pyran derivatives. However, lignin is converted into phenol, guaiacol, syringol, pyrocatechol, and 
their derivatives, which are dissolved in the bio-oil layer [39]. After cryogenic separation, smaller 
molecules partition into the water layer (i.e., the PA layer) and larger molecules in the bio-oil layer. 
The gas chromatograms and the main constituents of MEP are shown in Figure 5.  

Figure 5. Total ion chromatogram and the main constituents of PA-200 MEP. 
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Figure 5. Cont. 

 

The compound numbers in Figure 5 correspond to those in Table 5. The main constituents of MEP 
were p-cresol (22.84%), formic acid phenyl ester (17.80%), and furandione (17.06%). The main 
constituents of DMEP were p-cresol (16.24%), formic acid phenyl ester (20.89%), and furandione 
(7.20%). However, which in EFEP and TFEP was slightly lower, and the antioxidant activity of MEP 
and DMEP was higher than that of EFEP and TFEP. Therefore, in combination with the results of total 
phenolics content, ferric reducing power, and free radical scavenging activity, the phenolic hydroxyl 
and polyenes played an important role in improving the oxidative resistance of PA after pyrolysis. 
Twelve compounds from DMEP and MEP were identified, and for EFEP and TFEP, 19 and 17 
compounds were identified, respectively. BHT (No. 22 compounds), which was added to the solvent to 
maintain its stability, was present in small amounts (<5.0%). 

These results indicate that compounds containing the phenolic hydroxyl group are functional 
components responsible for the reduction of oxidants and scavenging of free radicals. This conclusion 
is supported by similar results obtained in other studies [15,39]. 
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3. Experimental Section 

3.1. Material 

3.1.1. Chemical Reagents 

Folin-Ciocalteu’s reagent, 1,1-diphenyl-1-picrylhydrazyl (DPPH, 95%), gallic acid, 2,4,6-tripyridyl-
S-trizine (TPTZ), 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox), butylated 
hydroxyanisole and butylated hydroxytoluene (BHT) were purchased from Sigma-Aldrich (St. Louis, 
MO, USA). All other chemicals of analytical grade and were obtained from Sinopharm Chemical 
Reagent Co., Ltd (Beijing, China). Reverse osmosis Milli-Q water (Millipore, Billerica, MA, USA) 
was used for all solutions and dilutions. 

3.1.2. Raw Materials 

S. chinensis fruit were purchased from San Keshu Trading (Heilongjiang, China) and identified by 
Professor Shao-quan Nie from the Key Laboratory of Forest Plant Ecology, Northeast Forestry 
University (Harbin, China). S. chinensis fruit were crushed and refluxed twice with an ethanol-water 
(80:20, v/v) solution at 90 °C for 2 h to obtain the active compounds, such as polysaccharides, 
anthocyanins, terpenoids, organic acids, vitamins, tannins, biphenyl cyclooctene lignans and 
derivatives, etc. And then the extracts were concentrated under the vacuum conditions, and the 
residues were stored under í4°C until used for thermochemical conversion. 

3.2. Methods 

3.2.1. Molding Method 

The dried residues prepared in Section 3.1.2 were dried and then compact molding in briquetting 
equipment. In the process of compact molding, there is continuous feeding and continuous discharge 
mode with the improved briquetting equipment. The dried residual were first put into the hopper, and 
then the electric heating tube and the extrusion machine were started, driving the spiral propellers put 
the dried residual into the molding sleeve. Finally, the molding rods were export from the exit of 
molding sleeve. The schematic diagram of briquetting equipment was shown in Figure 6. 

Figure 6. Schematic diagram of the briquetting equipment. 
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3.2.2. Pyrolysis Method 

The molding rods prepared in Section 3.2.1 was heated for pyrolysis in a system consisting of a 
pyrolysis kettle and condensers (Figure 7). The molding rods were placed in the pyrolysis kettle, and 
the liquefier and pyrolysis kettle were started. The pyrolysis rate was controlled by adjusting the 
heating power, and the condensate was collected and the residual tar was purified. Then, the electric 
heating tube was opened. The end point of the pyrolytic reaction was determined by weighing the 
transducer. At the end point, the final weight increase of the condensate was less than 2.0%, and the 
valve was turned off. Condensate collected from the condenser contained PA in the upper layer and 
bio-oil in the lower layer. The raw PA obtained had a clear reddish-brown color similar to black tea. 
The solid residue remaining in the pyrolysis kettle was biochar. According to the law of conservation 
of mass, the mass difference from input and output products was determined by the product mass of 
non-condensable gas. 

Figure 7. Schematic diagram of the pyrolysis equipment. 

 

3.2.3. Preparation Method of PA Extracts 

Three PA pyrolysis products were obtained, including PA-200 (heating power 200 W, highest 
pyrolysis temperature 310 °C), PA-700 (heating power 700 W, highest pyrolysis temperature 440 °C), 
and PA-1200 (heating power 1,200 W, highest pyrolysis temperature 530 °C). Each was obtained 
using 200 g of S. chinensis fruit. The ending of the pyrolysis process was that no more yellow gas was 
generated and no more liquid was collected. After pyrolysis, the PAs were dried over anhydrous 
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sodium sulfate. They were then extracted at room temperature by mixing (100 rpm) for 0.5 h with each 
of the following solvents: ethyl formate, dichloromethane, methanol, and tetrahydrofuran. The sodium 
sulfate was removed by filtration, and the organic extracts were used for antioxidant tests. While these 
solvents were selected for this study, they are not recommended for use in food and medicine industry, 
due to the residues of toxicity solvent. Especially formate, dichloromethane, and tetrahydrofuran, 
bacause the large consumption of organic solvent was not conducive to environmental protection. The 
volume of each organic solvent used was half the volume of PA. The ethyl formate extract phase 
(EFEP), dichloromethane extract phase (DMEP), methanol extract phase (MEP) and tetrahydrofuran 
extract phase (TFEP) were thick brown liquids and were stored at 4–8 °C in the dark. 

3.2.4. Folin Ciocalteu Assay 

A colorimetric assay based on a published procedure with slight modifications [10,43] was used for 
estimating the total phenolic content of PA. Each sample (1 mL) was pipetted into a tube, and 50% 
Folin Ciocalteu’s reagent (1 mL) and 10% sodium carbonate solution (1 mL) were added. The 
solutions were vortex mixed for 30 s, and then left to stand at room temperature for 2 h. Absorbance 
measurements were recorded at 765 nm, using gallic acid to construct calibration curves. The results 
are reported as mean values expressed as milligrams of gallic acid equivalents per gram of sample. 

3.2.5. Ferric Reducing Antioxidant Power (FRAP) 

The reducing antioxidant capacity of PA and its extracts were examined using a modified FRAP  
assay [4]. The FRAP reagent was prepared from 300 mmol/L acetate buffer (pH 3.6), 20 mmol/L ferric 
chloride, and 10 mmol/L 2,4,6-tripyridyl-s-triazine diluted in 40 mmol/L hydrochloric acid. The three 
solutions were mixed in a ratio of 25:2.5:2.5 (v/v/v). The FRAP assay was performed using reagents 
preheated to 38 °C. Before analysis, the initial absorbance of 3 mL of the reagent and 3 mL of acetate 
buffer used as a blank were measured at 593 nm. The samples (100 ȝL) were transferred into test tubes 
containing the reagent. The mixtures were shaken thoroughly and he absorbance values at 593 nm 
were recorded after 90 min. A higher absorbance indicated a higher ferric reducing power. The 
reducing antioxidant power of the sample is expressed as Trolox equivalent (TE/g), which is the ratio 
between the slope of the sample’s regression line and that of Trolox. 

3.2.6. DPPH Free Radical Scavenging Activity 

The DPPH radical scavenging activities of PA and its extracts were examined using the method of 
Lee et al. [44] and compared with those of the synthetic antioxidants BHA and BHT. Briefly, a 1.0 mL 
sample was mixed with 2.0 mL of a methanolic solution of DPPH (35 mg/L) in a lightproof container. 
The mixture was shaken (100 rpm) and allowed to stand at room temperature for 30 min. Then, the 
absorbance was measured at 517 nm (UV-2550 spectrophotometer, Shimadzu, Kyoto, Japan) against 
methanol as a blank. Lower absorbance values for the reaction mixture indicated higher free radical 
scavenging activity. The percentage of DPPH discoloration of the samples was calculated according to 
the formula: 

SC % = (A0 í A)/A0 × 100 
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where A0 is the absorbance of the control reaction, which contained all reagents except the test 
compound; and A is the absorbance of the sample. The sample concentration providing 50% inhibition 
(SC50) was calculated from a graph of inhibition percentage against sample concentration. 

3.2.7. GC-MS Analysis 

GC-MS analysis was carried out on an Agilent 7890A GC system (Agilent Technologies, Palo Alto, 
CA, USA) fitted with a DB-17MS capillary column (30 mm × 0.25 mm, film thickness 0.25 ȝm) and 
equipped with an Agilent 7693 auto sampler, and 5975C inert XL EI/CI mass selective detector with 
triple-axis detector. A sample volume of 2 ȝL was injected manually in splitless mode. The carrier gas 
was helium (He) at a flow rate of 1.0 mL/min. The oven temperature was set at 60 °C for the initial 5 min, 
then increased to 120 °C at a rate of 10 °C/min and held for 5 min, increased to 200 °C at a rate of  
10 °C/min and held for 5 min, and then increased to 280 °C at a rate of 10 °C/min and held for 15 min. 
The injector and detector temperatures were 280 °C and 230 °C, respectively. The pressure and flow 
rate of the injector were 15.0 psi and 25.0 mL/min, respectively. The MS was operated at 70 eV, and 
the scan range (TIC) was 50–500 m/z. 

4. Conclusions 

The pyrolysis process and products of S. chinensis fruit were studied. The yield of PA was higher 
with a lower pyrolysis heating power than with a higher pyrolysis heating power. Based on the total 
phenolic contents of the PA extracts, PA-200 was selected to test for antioxidant activities, including 
free radical scavenging activity and ferric reducing power. MEP and DMEP of PA-200 showed 
superior characteristics compared to the other extracts. Phenols and polyenes were the major 
components in MEP and DMEP, followed by ketones and furan derivatives. The results indicated that 
phenols were the functional components from S. chinensis fruit responsible for the reduction of 
oxidants and scavenging of free radicals in PA. The organic solvents in the PA extracts were vacuum 
evaporated, and then dissolved in ethanol, used in food, medicine, cosmetics and pesticides industry, 
respectively. Moreover, the further analysis of PA extracts, such as toxicity tests are necessary. 
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